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Abstract. Stochastic models are required in order to generate synthetic series of flows statistically similar to 

observed ones for use in simulation studies of water resources management. Autoregressive- Moving Average 

Model is used in this study where a number of parameters are estimated from observed daily flows data for 

three stations at Pahang River. The parameters are used for generated the synthetic series The ability of the 

model is measured on the statistical characteristic such as mean, standard deviation, minimum and maximum 

flow and also the behavior of structure flow that produced by synthetic series. From the analysis, the model is 

able to preserve the statistical characteristics only for Pahang River at Lubok Paku and Pahang River at 

Temerloh however it is not satisfactory for Pahang River at Kg Sungai Yap.  

Keywords:  ARMA model, daily flow, statistical characteristic 

 
 
1.INTRODUCTION                           
  

 Synthetic streamflow is very useful in reservoir simulation studies and water resources planning and 

management. It describes the character of streamflow sequences that may occur in the future. This sequence 

is widely used to evaluate the ability of the existing or proposed water supply and hydroelectric system. Design, 

long term planning, and operation planning can benefit from information about the likelihood and likely 

character of possible drought streamflow.  

 Sharma et al. (1997) cited that it is very important to generate synthetic streamflow sequences to 

analyze alternative designs, operation policies, and rules for water resources systems, and that the dependence 

structure of streamflow sequences is often assumed to be Markovian, that is, dependent on only a fine set of 

prior values. 

 Vogel and Stedinger (1988) show that use of stochastic hydrology is likely to result in more precise 

estimates of over year storage requirement than using just the drought of the record. In order to understand the 

variability of future streamflow system performance, the alternative is by using the stochastic streamflow 

model. The model will generate the synthetic flow sequences that are statistically similar to the observed 

streamflow records or historical streamflow data.  

 Other researchers including Chakhchoukh (2010), Abo-Hammour et al. (2012), Huang et al. (2012), 

Karthikeyan and Kumar (2013), Marelli et al. (2013), Bou et al. (2013), Cao et al. (2013), Laner et al. (2013), 

Rout et al. (2014), Zhu et al. (2014), Zhu and Li (2015), Zhu et al. (2015), Zheng et al. (2015), Aghdam et al. 

(2015), Brockwell et al. (2016), Triacca (2016), Kumar and Mazumdar (2016), Bertha and Golinval (2017), 

Xiao et al. (2017), Wang et al. (2018), Baptista et al. (2018), Shen et al. (2018), Boubacar Maïnassara, and 

Saussereau (2018), Singh and Pozo (2019), Hossain et al. (2020), Hackstein et al. (2020), Moon et al. (2021), 

Berardengo et al. (2021), Li et al. (2021), Xu et al. (2022), You et al. (2022) also made similar observations.  
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 The generated synthetic streamflow sequences will augment the performance and description which 

is provide in historical streamflow record or data; the synthetic sequences and critical periods, then all of the 

information serve as the basis of reservoir simulations, and possible reservoir systems performance. 

 On the other hand, the synthetic streamflow and reservoir simulations also perform the realization of 

drought or wet years that could occur and likely the reservoir systems performance during the events. The 

synthetic streamflow sequences also can be used to construct a probabilistic description of how the entire 

system is likely to perform that is not only tied o the particularly events and timing of the drought of record. 

Lettenmaier et al. (1987) said that the synthetic streamflow sequences can also be used to generated refined 

estimates of the probability that given powers targets can be met without failure due to drought and the capacity 

that may be available to avoid loss—of –load events in brief emergency situations.  

 The purpose of this study is to generate the synthetic streamflow using ARMA Models, which will 

represent the characteristic and statistical parameters that are approximately similar to the historical data. 

 

 

2.0  FINDING FROM PREVIOUS RESEARCH 
2.1 HISTORICAL BACKGROUND  
 

 Synthetic streamflow is an important subject in stochastic hydrology and has received a lot of attention 

in hydrologic literature. Synthetic streamflow was first used by Hazen, (1914) in studies of water supply 

reliability. Hazen created a 300-year synthetic record by combining the scale-adjusted records of fourteen 

streams; he then used his synthetic record to compute the probability of supply deficits for several demand 

levels. Hazen's synthetic record contained significantly less information than a 300-year single-site record, 

because concurrent flows in his streams were not statistically independent.  

 Barnes, (1954) used a different approach to create extended streamflows records. Barnes found that 

the 29 years of observed streamflows at a site in Australia were distributed almost normally, he generated 1000 

years of synthetic flow data by selecting flows from a normal distribution with the same mean and variance as 

the historical series. 

Maass et al, (1962); Thomas and Fiering, (1962) have developed the models which consider the correlations 

between consecutive monthly or annual flows. Then, (Fiering, 1967) has extended the models by describe non-

normal marginal probability distributions. Other efforts were directed at generating reasonable sequences of 

concurrent flows at several sites (Beard, 1965b; Matalas, 1967). 

 Box and Jenkins (1970) established many of the current time series modeling techniques. They have 

developed a classification scheme for a large family of time series models. In this scheme, the Thomas-Fiering 

and multivariate Matalas models were denoted as AR(1), or autoregressive models of order 1, because they 

regress flows in one period on flows in the previous period. Box and Jenkins also discussed autoregressive 

models of arbitrary order p, or AR(p); moving average models of order q, or MA(q); and combinations of the 

two, which they called ARMA(p,q). 

 

 

2.2  MATHEMATICAL FORMULATION  
2.2.1  AR Models (Autoregressive Model) 

 

A stationary time series yt   normally distributed with mean μ and variances σ2, which has an 

autoregressive (Markovian) correlation (or time dependences structure) with constant parameter. The 

autoregressive model of order p, denoted y AR(p) representing the variable yt  may generally  written as  

 

                   yt  = μ + φ 1  (yt-1 – μ)+……  φ p  (yt-p – μ) + εt                                          ( 1 ) 

      
Regarding to Fiering (1971); Beard (1967), the autoregressive model are performed as              

                                       p 

   yt  = μ + Σ φ j  (yt-j – μ)+……  σ(1-R)1/2 ξt                              ( 2 ) 

                                                       j=1 

 
While based on Yevjevich (1972) the equation as follow 

   

  yt  = μ + σ zt                                                                           ( 3 ) 
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               p 

   zt  = μ + Σ φ j zt-j +  εt                                                                                        ( 4 )           

                                                       j=1 

or 

                p 

  zt  = μ + Σ φ j zt-j +  σεξt                                                                                        (.5 ) 

                                                      j=1 
According to Box and Jenkins (1970) the mathematical formulation of AR are as 

                 p 

   yt  = μ + Σ φ j  (yt-j – μ)+ εt         or                                            ( 6 ) 

                                                       j=1 

 

                 p 

   yt  = μ + Σ φ j  (yt-j – μ)+ σt ξt                                                                      ( 7 ) 

  j=1 

 

 
2.2.2 ARMA Models (Autoregressive- Moving Average Model) 
 

Consider the originals periodic series XV,T , where v denotes the year, T =1,…..w and w is the number 

of time in the year .Assuming that the distribution of the series is skewed ,an appropriate transformation XV,T  

to the normal series  YV, τ.Then the periodic  ARMA models for YV,T  can be write as 

 

 YV,τ =µτ  + σ τ  z V,τ                                                                         ( 8 ) 

    

Where µτ  and σ τ  are the periodic mean and periodic standard deviation  need may be represented by 

an ARMA Models with either constant or time varying (periodic) coefficients. 

 The ARMA (p,q) model with constant coefficient is 

                                             p                  p               

 zτ =  Σ φj z τ – j  -  Σ θi ε τ – j  + ε τ                                                          ( 9 )      

                                            j=1               j=1 
where τ = (v-1) w+ τ  φ and θ are the coefficient of the models and ετ  is the independent variable. 

Tao, P.C and Delluer, J.W.  (1976) used the ARMA (p,q) model with time –  varying coefficient as  

 

                                               p                          q               

 z τ  =  Σ φ j , τ  z v, τ – j  -  Σ θ i , τ  ε v, τ – i  + ε v ,τ                                      ( 10 )                         

          j=1                      j=1 

 
 where φ j , θ i , τ   are time varying autoregressive and moving average   coefficients ,respectively and 

ε v ,τ is an independent and identically distributed normal random variable.  

 

 
3.0   METHODOLOGY 
3.1  Generating Synthetic Streamflow Procedures         

I. The historical data was transformed using logarithm function where  

y = log(x)                  ( 11 ) 
The data have to be transformed in order to improve the accuracy of parameter estimates. 

II. The seasonality of the transformed data is removed to standardized series with mean equal to zero 

and standard deviation is one. The standardized flows are obtained from  

                                  y= log (x) -μy                                                                ( 12 ) 

                                     σy 
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III. The auto-covariance function ck, the autocorrelation coefficient rk =ck/s2 , and the partial 

autocorrelation coefficient φk (k) for lags k going from 1 to at least N/4 but less than N is 

calculated. 

IV. From the behavior of autocorrelation and partial autocorrelation functions, it infer the order of 

model, namely, the values of p and q which are likely to fit the series. 

 

V. The initial estimate of the p autoregressive parameters φ1xi and φ2xi−1,……and φpxi−p+1 by solving 

the p Yule-Walker equations 

 

xi+1 = φ1xi + φ2xi−1 + · · · + φpxi−p+1 + ξi+1                        ( 13 ) 

 
This step is performed by means of MINITAB computer program. 

VI. The initial estimates of the q moving average parameter obtained from of the series and also the 

autovariance function ck’ of the zt’ series is calculated. It can be calculated as usual. 

Alternatively, use Box and Jenkins (1976) formula for the ck’ in terms of ck of the zt series and 

the φ already available from steps 3 and 4, respectively:  

  This step also performed by means of MINITAB computer program. 

VII. Obtained the maximum likelihood estimate of the parameters. The residual calculate   

    εj = 0 ; j=1 ,……, max (p,q) 

                                      j=1,2……N-p 
       the sum of square 

                                                        N 

                         S= Σ εt 
2                                          

                                                                t=1       ( 14 ) 

 
for several values of φ and θ around the initial estimates and obtain the values of the φ’s and θ’s 

for which S is minimum. 

The autocorrelation function rk(ε) of the residual series εt  for the lags k going from 1 to L =N/10 

+p+q . The εt   obtained from the MINITAB computer program. The statistic calculated                                   

  
VIII. Generation of synthetic series.  The series formula  

            This step is performing by using IMSL (RNARM/DNARM) program. 

    

 
4.0  DATA ANALYSIS  

4.1 Data Collection 

In this study, the daily streamflow data of Pahang River which consist of 3 stations site collected from 

Drainage and Irrigation Department (DID) There are from three gauge stations as numbered station site 

3424411, station site 3527410 and station site 4023412. All series of data considered as a historical data. 

 

 

4.2 Fitting ARMA Models 
 

The order of p and q is determined to identify the appropriate ARMA Model from the behavior of 

autocorrelation and partial autocorrelation functions presented in table 1. This step is performed by USING 

MINITAB MACRO Program as in appendices A. 

 

Table 1. The order of AR (p) and MA(q) for each station site 

Station site AR (p) MA(q) 

3424411 3 0 

3527410 3 0 

4023412 3 0 
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4.3 Estimation of model parameters.  

 

For this purpose, the method of maximum likehood is used to estimate the  parameters. The parameters 

are presented in table 2.  

 

Table 2. The parameters estimated of each station site 

  

Station Site AR (1) AR (2) AR (3) 

3527410 1.3081 -0.5256 0.1749 

3527410 1.5264 -0.7888 0.2421 

4023412 1.1801 -0.4163 0.1944 
 

 

4.4      Generating synthetic streamflow 
 

The best model is chosen and it can be used for generation the synthetic data by using IMSL 

(RNARM/DNARM) program. 

 

4.5     Comparison between the historical data and synthetic data 
 

The final stages, is to compare the descriptive characteristic of historical data and synthetic data 

generated by the ARMA model such as mean, standard deviation and the minimum and the maximum flow of 

series. 

 

 

5.0  RESULT AND DISCUSSION 

 The accuracy of the model to generate the synthetic data is measured by the ability of the model to 

reproduce the statistical characteristics similar to that of the historical data. The descriptive characteristic of 

the observed series after transformation and the generated series are presented in table 3. The mean and the 

standard deviation value of the observed series for each station site are seen to be well preserved since statistical 

characteristics of generated series is quite similar to the observed series. 

 

Table 3. The descriptive statistic of transformed data and the generated transformed data 

 
 Site 3424411 Site 3527410 Site 4023412 

Std Dev Mean Std Dev Mean Std Dev Mean 

transformedData 1 0 1 0 1 0 

Generated transformed 

data Data 0.937 0.107 0.967 0.1292 0.75 0.1053 

 

 The other important characteristics of the historical series that to be considered in water management 

are the minimum and the maximum flow. The successful of the model to generate the synthetic data also 

counter by the ability of the model to reproduce the minimum and the maximum flow. It indicates that the 

minimum and the maximum flow value for the synthetic data are as good as the historical data (less than 20%) 

for station site 3527410 and station site 3527410.The minimum and the maximum flow for station site 4023412 

is not good as expected with between 35% to 40% error. 

 Another approach to measure the ability of the model in order to generate the synthetic data is by 

looking at the autocorrelation function (ACF) and partial autocorrelation function (PACF). They indicate the 

presence of persistence structure in the data. The ACF and PACF also give information about the non-seasonal 

and seasonal AR and MA operators for a time series. 

 The identification of the appropriate parametric time series model depends on the shape of the ACF. 

Based on the Figure 1a, 2a and 3a, the ACF is significantly different from zero, this implies that there is 

dependence between observations for the historical data. By comparing the Figure 1a and 1b, it shows that the 
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synthetic data have the same structure figure as the historical data. The same goes to by comparing the Figure 

2a and 2b and also figure 3a and 3b.  

 While the PACF for historical data are shown as Figure 4a, Figure 5a, and Figure 6a. The observations 

indicate significant serial correlations (persistence) associated to daily flows (historical data) at station site 

3424411, station site 3527410 and station site 4023412. While, from Figure 4b,5b and 6b, the generated 

synthetic data are able to reproduce the persistence effect for station site 3424411, station site 3527410 and 

station site 4023412.The structure flow that producing from the synthetic data from each station site  is likely 

same as the historical data structure. 

 The result from the comparison between the historical flow and the generated flow are good for the 

Pahang River at Kg Sungai Paku (station site 3424411) and Pahang River at Temerloh (station site 3527410) 

but not so satisfactory for Pahang River at Kg Sungai Yap (station site 4023412). However, the method does 

seem to have some potential and would merit further investigation. 

 In order to test the ability of the proposed model to reproduces the statistical of the historical data, 

a synthetic data is generated (simulated) with the sample size equal to the historical data. The figure 7, figure 

8 and figure 9 are shown times series plot of the synthetic data (simulation data) for each station site that have 

been generated by this model. It showed that the synthetic data seems to be adequate for simulating the flows 

series. 

 

 

6.0 CONCLUSION  
 

 Simulation of the historical flow records are needed for reliable information for many water resources 

studies. From this study, it is seen that the ARMA model is able to reproduce descriptive characteristics such 

as mean, standard deviation, minimum and maximum flow of generated series as good (less than 20%) as 

observation data only for station site 3527410 and station site 3527410. The model does seem to have the 

potential and would merit further investigation for it allow to be used in water resources and management 

planning. 
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Figure 1a) ACF of  Historical Data for          Figure 1b) ACF of Simulation Data                      

                 for station site 3527410                                for station site 3527410   

 

 

Lag

A
u

t
o

c
o

r
r
e

la
t
io

n

2018161412108642

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Autocorrelation Function for SIMULATION
(with 5% significance limits for the autocorrelations)

 
 

Figure 2a) ACF of  Historical Data for           Figure 2b) ACF of Simulation Data          

                  station site 3527410  station site 3527410 
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Figure 3a) ACF of  Historical Data for           Figure 3b) ACF of Simulation Data          

      station site 4023412                                          for station site 4023412 
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 Figure 

4a) PACF of Historical Data for         Figure 4b) PACF of Simulation Data          

      station site 3527410                                 station site 3527410  
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Figure 5a) PACF of Historical Data for           Figure 5b) PACF of Simulation Data                 

                 station site 3527410                                   station site 3527410 
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Figure 6a) PACF of Historical Data for           Figure 6b) PACF of Simulation Data          

      station site 4023412                                          for station site4023412 
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Figure 7. Time Series plot for station site 3424411 
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Figure 8. Time Series plot for station site 3527410  
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Figure 9. Time Series plot for station site 4023412 
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