Balancing Wetland and Stream Preservation with Stormwater Management: a Case Study

Andrew T. Der
Andrew T. Der & Associates, LLC, 1000 Fell Street, Baltimore, Maryland, USA, 21231 (Email: AndrewTDer@comcast.net)

Abstract

Current and contemporary regulation of development-related activities affecting receiving waters can require complex approaches to the management of stormwater and resource avoidance including an on-the-ground historical basis for practicable regulatory decision-making. Such experience indicates growth can be accommodated in a manner that avoids and minimizes stream and wetland impacts and remain compatible with effective stormwater management (SWM) strategies. The historically innovative example is the first of several development projects in a 405-hectare (1000 acre) watershed of the Potomac River in the greater Washington, DC area and is actually one of the first “Environmental Site Design (ESD)” or “Low Impact Development (LID)” approaches to nonpoint source water quality management before the strategy was formalized in the industry. Impacts were reduced and mitigated by innovative design revisions, creative approaches to wetland mitigation, and contemporary SWM. These practices were subsequently utilized and refined for further current development projects in this watershed as well as generated State-wide data. The positive outcome of this process is attributable to an effective partnering of engineering and ecology, a water quality/stream biomonitoring plan, and a pro-active “win-win” public involvement process.

Keywords: nonpoint, wetland, stormwater, LID, ESD, SWM, BMP, mitigation, permitting

INTRODUCTION

In response to increasing regulatory authority over its water resources, the Maryland Department of the Environment (MDE) in cooperation with the regional civil engineering industry has over the years combined programs and processes into a "one stop shop" where various issues can be addressed in a consistent manner. This can be effective when large-scale complex projects are submitted for applicable water resource permits. Experience has shown that balancing growth with resource and water quality protection can involve balancing various approaches within this process. Specifically, avoidance and minimization requirements of wetland/stream protection programs may not necessarily be compatible with more traditional stormwater management (SWM) strategies. Further, MDE's process may necessitate the consideration of requirements and practices that can exceed those not historically required by the local municipality.

Presently, MDE regulates activities that may affect or impact water resources and features under the applicable regulations which is conceptually similar throughout other states.

- Nontidal Waters and Wetlands (NTWW): Areas that are jurisdictional per 1987 U. S. Army Corps of Engineers’ (Corps) Manual and their 7.6 meter (25.0 foot) buffer – through joint permit process with U. S. Army Corps of Engineers (Corps) Clean Water Act (CWA) Section 404 process.
- In addition, all waters are concurrently regulated by the Corps as defined above in a joint process.
- Tidal Wetlands: Tidally influenced open (“navigable”) water and their wetlands.
- Construction on Nontidal Waters and Floodplains: Activities that can alter flow, current or cross-section of streams and the 100-year floodplain – through joint process with NTWW process above.
- Water Quality Certification: CWA Section 401 review of activity requiring federal authorization (e.g., Corps Section 404 permit).

Most regulated projects qualify for the Corps’ Maryland State programmatic general permit that, in effect, allows MDE to authorize many projects on the Corps’ behalf.

The development project discussed is the first example of several subsequent ones in a 405-hectare (1000 acre) watershed, known as Piney Branch, in Montgomery County, Maryland in the greater Washington D.C. metropolitan area (Figure AF1). The area lies in the Potomac River watershed between the Mid-Atlantic Piedmont region and the coastal plain. Some near-pristine areas remain in the lower reaches of the watershed. Woodlands are primarily deciduous hardwood forest, some of it being regenerative from previous clearing. The project lies in an actively cropped agricultural field and shrubby intermittently cleared areas. Higher quality wetland habitat occurred downstream of impact areas.
Some stream reaches exhibited accelerated bank erosion, filamentous algae and poor invertebrate diversity while other reaches were relatively absent of such indicators. Stream bottom substrate is composed of silt, sand and fine gravel with transition to some cobble and rock in lower reaches. While some groundwater contribution was evident, the riparian systems are primarily driven by surface drainage, some from offsite development without stormwater controls. Wetlands were primarily palustrine forested and palustrine scrub-shrub and contiguous to the streams. The MDE review of this development project began in the 1990s with the first proposed impacts associated with road construction, lot fill and regional SWM basins. The proposed activities required MDE and Corps authorization to proceed. Additional portions also requiring MDE/Corps authorization have been reviewed since then and all of the areas are constructed - the development sequence progressing up-drainage. Presently the entire watershed is built out and stable.
METHODS

The initial development proposal was subject to multiple regulatory criteria and the lead agency, MDE, requested that proposed wetland and stream impacts be additionally avoided and subject to further minimization. The remaining impacts associated with road access were acceptable with some minimization via narrowing of footprint, better crossing approaches and bottomless structures. Since the proposed SWM strategies would convert, by ponding, the cooler wooded riparian stream system to warmer open water subject to pollutant loading and eutrophication, the MDE further determined that the in-stream regional management ponds might also be incompatible with Maryland’s water quality standards.

Maryland’s waters are classified by four primary Use designations with certain narrative and numerical criteria for maintaining designated uses (MDE, 2010). P indicates additional use as public water supply.

Use I, I-P : Water contact recreation and protection of aquatic life
Use II : Shellfish Harvesting
Use III, III-P : Natural Trout Waters
Use IV, IV-P : Recreational Trout Waters

In addition, these standards include the U.S. Environmental Protection Agency mandated Anti-Degradation Policy (ADP), which is a brief narrative standard stating:

"...Certain waters of this State possess an existing quality which is better than the water quality standards established for them...To accomplish the objective of maintaining existing water quality...nonpoint sources shall achieve all cost effective and reasonable best management practices for nonpoint source control"...

After some initial revision, the direct wetland and waterway impacts of the construction were sufficiently avoided, minimized, and proposed to be mitigated with extensive onsite wetland creation, but the secondary impacts of accelerated stream flows, flood (quantity) management and nonpoint source pollution associated with inevitable upland development remained a challenge. The county had already approved this project because local SWM ordinances are not necessarily intended for onsite habitat protection, but rather require flow management at the point drainage departs from the property.

Therefore, in what ways could a continually increasing runoff curve be managed in a manner that will avoid the low-lying stream/wetland areas while allowing for reasonable use of property (Figure AF2)? The burden to manage for quantity (as opposed to just quality) entirely in uplands can be enormous and require a greater deal of dedicated property for storage. Indeed, this can be, and is, required in more unaltered and pristine watersheds as an alternative to in-stream SWM structures.

![Figure AF2 Universal hydrograph of nonpoint source runoff events pre-development (blue) vs. post-development (green)](image)

In certain situations, a more flexible approach may be warranted on a case-by-case basis where a moderate amount of SWM in wetlands and streams can occur with special mitigative requirements. Such situations typically include:
- Upstream land clearing and development exists before stormwater controls were required, i.e., a retrofit situation, where existing water quality indicators demonstrate ongoing impairment and degradation. Depending on the pre-existing condition, this could yield a net gain.
- Stressed and previously disturbed habitat exists such as accelerated bank erosion and altered species composition with little diversity.
- Completion of extensive local review and design prior to implementation of applicable environmental laws and regulations (this factor is rarely applicable today).
- Existing land use activities would continue to be detrimental should the area not be developed with mitigative controls.

Since these conditions were present in much of the watershed, the MDE determined that to consider site-specific BMP strategies with moderate in-stream impacts desirable to the development effort is appropriate. A hierarchy of ecologically preferred methods for quality control in upland areas were considered where feasible.

Vegetative buffering of impervious surfaces
Infiltration via trenches, basins, or depressions
Bioretention, filtering marsh/wetland, vegetated swales, sand filters, “rain gardens”
Extended detention basin with wetland bottom
Retention basin with wetland zone

The criteria would require a minimum of the first 1.27 centimeter (half inch) of runoff, which removes 68-90% of pollutants (MDE, 2007), from the impervious surface (sometimes drainage area) to be managed by these practices prior to release into waters or wetlands to control the majority of “first-flush” pollutants such as sediments, nutrients, hydrocarbons and metals. Today, this is frequently exceeded under current SWM criteria to utilize ESD to the Maximum Extent Practicable (MEP) and replicate “woods in good condition” in the post-development condition. Since post-development runoff peaks were anticipated to exceed pre-existing conditions by a minimum of 10%, the applicable stormwater ordinance requires quantity management for the 2 and 10-year event at a minimum.

Through the analysis of boring logs, infiltration was found to be feasible in only limited portions of the site. The majority of the site was unsuitable due to impermeable soils (must have a minimum infiltration rate of 1.3 centimeters (0.5 inches)/hour and a seasonally high water table within 1.2 meters (4.0 feet) or less of the bottom of a potential facility, steep slopes or rock (MDE, 2007). These were more suitable for conveyance to pretreatment practices such as wetlands/marshes and ponds.

Subsequently, the following mitigative practices and BMP's were proposed to the MDE and accepted.
- Total wetland and waters impacts are limited to 1.02 hectares (2.52 acres) out of 8.34 hectares (20.60 acres) for the first 96-hectare (238 acre) property with impacts limited to road access, pond berms and utilities.
- Any in-stream SWM facilities would only occur in areas of marginal quality, i.e., waters of the U. S. that are previous agricultural and intermittent channels.
- Minimum stream buffers of 30.5 meter (100 feet) would be observed to augment and reduce reliance on man-made devices and practices as vegetative buffers are the most effective.
- Wetland mitigation will be provided at 2.3:1 replacement ratio along existing cleared riparian areas to reestablish a water quality and riparian buffer.
- Additional resource impact mitigation will be provided by biosensitive stream crossings including stream channel restoration and stabilization with ecological engineering practices (Figure AF3).
- The 1.91 to 2.54 centimeters (0.75 to 1.00 inch) of stormwater runoff, which removes 82-99% of pollutants, from the drainage area will be managed entirely in uplands prior to release into waters and wetlands.
- Infiltration and filtration practices will be utilized for pretreatment in those areas that allow (Figure AF4).
- Volumes beyond the first flush will be detained in the uplands where feasible and by in-stream embankments with a maximum detention time of 24 hours for the 10 year storm for temporary storage in the naturally occurring contour without excavation and clearing.
- The accelerated peak events will be attenuated without permanent pooling in the primary storage area to preserve the wooded wetland resource upstream of the BMP.
- Specially designed embankments to incorporate offline first flush pretreatment areas in uplands on either side of the short-term in-stream storage area referred to as “horseshoe ponds” because of their plan view and visual depictions (Figure AF5).
Figure AF3
Biosensitive road crossing preserving stream channel stability and riparian habitat as a component of a mitigation plan – a major and keystone component of all present watershed improvement strategies.

Figure AF4
Numerous quality pretreatment practices clockwise starting with top left – a sand filter discharging to a new wetland buffer area, parking lot bioretention filtration, pervious golf green and pathways, stream-side pocket vegetative filtration area.

- Any areas of permanent stormwater pooling will be planted with wetland vegetation for additional water quality enhancement.

During MDE’s public interest notice process, members of the stakeholder community were concerned that the water quality and resource impacts may not be sufficiently avoided and mitigated. In
addition, the Maryland Department of Natural Resources (DNR) informed MDE that the lower reaches of the property's main stem Use I stream, Piney Branch, possessed characteristics of higher quality Use IV or possibly Use III waters (adult trout and naturally reproducing trout respectively). This is important because the ADP requires that in such a situation the stream be afforded Use III or IV standards. With such standards, of particular concern are temperature increases and dissolved oxygen decreases associated with retention of stormwater which may violate the applicable temperature standards of 20 C (68 F) for Use III and 23.9 C (75 F) for Use IV and can be adverse to the salmonid trout, the regulatory indicator species. Dissolved oxygen standards are 5 milligrams per liter (mg/l) minimum for all waters. Unlike other areas of the country with natural cooler water lake systems (Maryland has none), streams can suffer from impoundment of flows (Schueler & Galli, 1992). Therefore, wet pond construction is discouraged in Use III and IV waters.

Figure AF5 Aerial drawing of regional “horse-shoe” pond for combined water quantity and quality management showing lobes and retention areas with pre-treatment cells and wetland transition habitat for additional ecological benefits – cross hatch area is preserved forested wetland habitat

The implications of such a finding could additionally affect the review process by requiring further reduction of development density along with impervious surface while utilizing more of the property for buffers and additional BMP's without any wet pond discharges. Since there was now sufficient reason to determine existing stream quality, the DNR, MDE and the County implemented their own assessment procedures utilizing EPA's Rapid Bioassessment (RBA) (EPA, 2002) protocols which showed that Piney Branch is a higher quality Use I water but not adequate to sustain a Use IV recreational trout resource (DNR, 1991), (MDE, 1991), (MNCPPC, 1991). This was confirmed by the inability of DNR to find one holdover trout during their sampling a year after stocking.

Due to the higher water quality characteristics now documented in the lower reaches of the watershed, some continued public concern, and the watershed-wide implications of this and forthcoming projects, the following additional water quality management practices were proposed and accepted as conditions of the permit.

- A water quality monitoring plan will be developed and implemented throughout the build out of the watershed and beginning with the first three SWM facilities proposed with this project to monitor effects of the development (Figure AF6).
A stream reach temperature model (Bartholow, 1987) will be implemented to predict potential stream temperature increases and will be calibrated for improved accuracy as field data become available to estimate likelihood of exceeding Use IV temperature standards.

- A maximum of 20% of stream base flow will be diverted to any offline pretreatment areas of the horseshoe ponds or to acceptable in-channel ponds, (i.e. 80% of natural base flow proceeds through or past the facility unaffected) to allow some flow into offline pooling areas during drought conditions promoting wetland conditions and water mixing while not depleting cooler base flow in stream.

- All ponded and pretreatment areas, stormwater conveyance ways and pond outlet structures will be planted with wetland vegetation including shade-producing species to the extent possible to minimize solar heating during summer (Figure AF7).

- Impoundment structures will have "toe drain" pipes under the fill areas to release cooler perched water sources.

In addition, flows were calculated for Piney Branch and the discharge points of all three ponds for the minimum rainfall event that could pool behind the berm (QED), which is 4.45 centimeters (1.75 inches), as well as the 2 and 10 year events to determine percent contribution of potentially warmer water. Results showed a total contribution to base flow of 0.28% for the QED, 0.86% for the 2-year event and 4.57% for the 10-year event, which would be negligible.

The water quality monitoring requirement had two goals: 1) compare baseline and post-construction data to determine BMP effectiveness for future regulatory use and 2) begin a local/State cooperative effort to determine appropriate and effective development and BMP criteria for future projects as well as initiate a cooperative interagency review and water quality assessment process. Quarterly reports were generated and provided directly to MDE and the county to aid in their local planning and decision-making process. Historic data is shown for three stations (#2, #6, #10) and monitoring for ultimately six stations was done on
an ongoing basis subject to a separate reporting timetable, but for simpler initial indicators, Stations #2 and #6 began three months prior to initial grading activities and is the primary focus. Initially, Station #2 began as lowest point in watershed. All data has ceased and findings completed (Figure AF8).

Figure AF7 Vegetative filtration buffer and habitat for nonpoint source flows

Figure AF8 Aerial rendering of proposed completed development with primary pond and two water quality monitoring stations, #2 at low point and #6 upstream, indicated (Station #10 up-drainage is not shown)

Water quality parameters being monitored in the field were dissolved oxygen, pH, turbidity, stream conditions and base flow, monthly throughout March to October. Water temperature was continuously recorded. Samples requiring collection and laboratory analysis were done for oil and grease and between November and February, inclusive for chlorides. The RBA Protocol II was used three times/year to assess benthic macroinvertebrates. Temperature and dissolved oxygen, the pertinent State numerical standards, along with the RBA were required for MDE purposes. Additional parameters were included at the request of the county.

RESULTS

The re-calibrated stream temperature modeling yielded the following data based on climatological records to date. Existing conditions showed a mean of 22.8 C (73.1 F) and maximum of 24.6 C (76.3 F). Build out conditions showed a mean of 23.2 C (73.8 F) and maximum of 24.9 C (76.9 F) which is acceptable. Final design and mitigation plans were provided and the permit was issued with all aforementioned special BMP and mitigation conditions.

Final design and mitigation plans were provided and the permit was issued with all aforementioned special BMP and mitigation conditions. The required water quality monitoring report submissions began in 1992 (Loiederman and Associates, 1992 - 1996). While this study had generated a plethora of “keystone”
regulatory data, the most pertinent are temperature, dissolved oxygen and the RBA as well as the success of stream restoration strategies. The historical RBA studies for stations #2, #6, and #10 are summarized in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Year</th>
<th>ST2</th>
<th>ST6</th>
<th>ST10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1993</td>
<td>Non Impaired **</td>
<td>Non Impaired **</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>Non to Mod. Impaired</td>
<td>Non Impaired</td>
<td>Non Impaired **</td>
</tr>
<tr>
<td>1995</td>
<td>Non to Mod. Impaired</td>
<td>Non to Mod. Impaired</td>
<td>Non Impaired</td>
</tr>
<tr>
<td>1996</td>
<td>Non to Mod. Impaired</td>
<td>Moderately Impaired</td>
<td>Non to Mod. Impaired</td>
</tr>
<tr>
<td>1997</td>
<td>Non to Mod. Impaired</td>
<td>Non to Mod. Impaired</td>
<td>Moderately Impaired</td>
</tr>
<tr>
<td>1998</td>
<td>Moderately Impaired</td>
<td>Moderately Impaired</td>
<td>Non to Mod. Impaired</td>
</tr>
<tr>
<td>1999</td>
<td>Moderately Impaired</td>
<td>Moderately Impaired</td>
<td>Moderately Impaired</td>
</tr>
<tr>
<td>2000</td>
<td>Moderately Impaired</td>
<td>Non to Mod. Impaired</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>Non to Severely Impaired</td>
<td>Moderately Impaired</td>
<td>Non Impaired</td>
</tr>
<tr>
<td>2002</td>
<td>Non to Mod. Impaired</td>
<td>Mod. to Severely Impaired</td>
<td></td>
</tr>
</tbody>
</table>

Non Impaired value is given to the first (reference) date for comparison purposes; the streams on those dates are not necessarily truly non-impaired.

The site suffered severe adverse effects from a ten-year storm resulting in out-of-bank flooding, alteration of channel morphology and breaching of a beaver dam. In addition, severely polluted runoff from an offsite upstream mulch and debris disposal area (not part of the property) using water spray to cool potential spontaneous combustion had been discharging to the study area and was corrected shortly thereafter. Other anomalies occurring within the data period was a drought. The results showed that, despite these activities, stream and wetland restoration practices were successful and DO concentrations were unexpectedly elevated during periods of higher temperature, and water quality standards had not been significantly violated at the downstream locations – Figures AF9 and AF10.

Figure AF9

Piney Branch Mean Dissolved Oxygen Levels for Stations 2, 6 and 10

Figure AF10

Piney Branch Instream Peak Temperatures Stations 2, 6 and 10

The moderate stream impairment and the noncompliant spike of the 1996 T indicated items that needed more scrutiny in subsequent measurement and was determined to be an anomaly related to the 10 year storm and mulch pile runoff. More significant data since then has shown similar results as cumulative indicators established themselves. Monitoring results from this initial project not only provided data on specific BMP performance, but the vital long-term picture for the watershed as well since the property is at a lower point. Other future regulated projects up-drainage also provided similar on-site monitoring and results.

CONCLUSIONS

The monitoring results and evaluation of onsite conditions indicate that the lower stream reaches of the property have sensitive water resources and can potentially be developed in a manner that complies with
regulatory requirements for wetland and stream protection. While this particular project required lengthy analysis and redesign, the lessons learned here made subsequent projects proceed more efficiently. More important, this project along with the development review of the subsequent properties up-stream fueled State/county efforts to refine and establish more progressive ecologically-based stream and wetland restoration practices, stormwater management regulations, improved and strengthened local involvement in the permitting process, and removed sometimes incompatible regulatory conflicts encumbering the regulated public.

This effort also laid historical groundwork for the creation of numerous interagency processes.
- A basis for “how we do it now”
- A basis for groundbreaking county Special Protection Area legislation
- A basis for local, state, federal coordinating committees and public processes
- A basis for initial findings for new U.S. EPA required watershed-wide nonpoint source monitoring and compliance requirements
- A basis for more biosensitive stream crossing initiatives
- A basis for formalizing increased local/state biological monitoring teaming efforts
- More efficient and equitable review of future critical projects

ACKNOWLEDGMENTS

Mr. John Corrigan and Mr. Martin Seldeen, the two principle property owners at that time, for their exemplary flexibility, cooperation and willingness to accommodate the concerns of MDE and the interested public throughout this process.

Mr. Edward Wallington of formerly Loiederman Associates, Inc. (LAI), the permittee’s consulting engineering firm, Mr. Richard Claytor, formerly of LAI, Mr. Ken Brown of LAI, and Ms. Mary Jo Kishler formerly of LAI for their invaluable expertise, innovative free-thinking approach to extremely complex issues and ability to put ideas and concepts to calculation, paper and construction.

Ms. JoAnne Watson and Ms. Mary Jo Garreis, formerly of MDE, for their guidance and assistance throughout the decision making process.

REFERENCES

Maryland Department of the Environment, (2010). Code of Maryland Regulations 26.08.02 Water Quality, Maryland Department of the Environment, Baltimore, Maryland, USA.

Maryland Department of Natural Resources, (1991). Macroinvertebrate Sampling of Piney Branch and Associated Streams, Montgomery County, Maryland Department of Natural Resources, Annapolis, Maryland, USA.

Maryland Department of the Environment, (1991). Memorandum: Stream Assessment of Muddy and Watts Creek, Maryland Department of the Environment, Baltimore, Maryland, USA.

